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This article focuses on the various models for
kidney toxicity due to trichloroethylene
(TCE). In particular, focus will be on the role
and quantitative importance of the glu-
tathione (GSH)-dependent (i.e., cysteine con-
jugate P-lyase [B-lyase]) pathway in
generation of reactive metabolites that have
been associated with various cytotoxic and
carcinogenic responses to either TCE or to
the GSH conjugate $-(1,2-dichlorovinyl)glu-
tathione (DCVG). A major focus will be fac-
tors and responses contributing to or leading
to renal tumorigenesis, as this topic has been
of major interest in human health risk assess-
ment. Areas of controversy will be high-
lighted, including discussions of species
differences in toxic responses and rates of
generation of reactive metabolites and dose-
dependent phenomena. Key metabolites that
have been associated with cytotoxic and car-
cinogenic effects in laboratory animals will be
identified, and their relevance to humans will
be evaluated.

The first section briefly reviews informa-
tion on the incidence of kidney cancer in the
general U.S. population. Incidence and risk
factors for kidney cancer in general are briefly
discussed, and then data on incidence of kid-
ney cancer after exposure to TCE are evalu-
ated. Limited epidemiological data are
available for renal cancer in humans exposed
to TCE. Studies of TCE-induced renal
cancer in laboratory animals highlight sex and
species differences and, consequently, the
difficulties in making risk assessments for

humans based on the animal data. The
second section will briefly review the toxic
and reactive metabolites of TCE that may be
important in TCE-induced renal toxicity.
The subject of TCE metabolism is dealt with
in greater detail in the article on “Metabolism
of Trichloroethylene”(1). The third and
major section of this paper considers pro-
posed modes of action for TCE in the kid-
neys. Several mechanisms are proposed,
including peroxisome proliferation, 0ty,-glob-
ulin nephropathy, genotoxicity, and acute
and chronic cytotoxicity. The latter includes
oxidative stress, alterations in calcium ion
homeostasis, mitochondrial dysfunction, pro-
tein alkylation, cellular repair processes, and
alterations in gene expression and cell prolif-
eration. Finally, the status of risk assessment
for TCE based on the kidneys as a target
organ and remaining questions and research
needs will be discussed.

Epidemiology of Kidney Cancer

Incidence and Mortality Rates of
Kidney Cancer in the U.S. Population

This section summarizes data on the incidence
of kidney cancer and mortality in the general
U.S. population and the health consequences
involved. Further, risk factors that may
enhance susceptibility to kidney cancer are
summarized. The discussion on the general
properties of renal neoplasia is summarized
from Brenner and Rector’s The Kidney, Fifth
Edition (2). Malignant neoplasms involving
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the renal parenchyma and renal pelvis may be
primary or secondary in origin. Primary neo-
plasms are those that derive from transforma-
tion of renal cells, whereas secondary
neoplasms are those that derive from metas-
tases of tumors in other tissues. In the kid-
neys, the frequency of metastatic neoplasms is
higher than that of primary tumors. Invasive
disease accounts for 99% of all tumors. Renal-
cell carcinoma accounts for approximately
85% of all primary renal neoplasms. Primary
neoplasm of the renal pelvis or ureter accounts
for 7-8% of renal neoplasms; nephroblastoma
(Wilms tumor) accounts for 5-6% of the
total; various sarcomas of renal origin account
for the remainder of the primary tumors.
Incidence rather than mortality is a better
indicator of kidney cancer, since survival
(5-years) is 58% for males and females com-
bined for invasive disease; no differences in
survival between sexes have been observed
(3,4). Survival is even higher, 87%, for local-
ized disease (4). Generally, the primary treat-
ment for kidney cancer is surgical removal of
the diseased kidney. It is rare that both kid-
neys are affected, and individuals can function
quite well with one kidney. Renal-cell carci-
noma is characterized by diverse and often
obscure symptoms and may easily be mistaken
for other diseases.

Controversy still exists about the relation-
ship between renal-cell carcinoma and renal
adenoma, as the two are not readily distin-
guishable on the basis of gross histologic,
immunologic, or ultrastructural features.
Both types of cells arise from the proximal
convoluted tubules. However, renal adeno-
mas are typically incidental findings at
autopsy, usually as small, well-circumscribed
lesions of the renal cortex, and renal adeno-
carcinomas are usually larger lesions.

Estimates for new cases of primary kidney
cancer and other urinary cancer cases for
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males and females combined for 1996 and
1997 are 36,000 and 28,800, respectively,
with 12,000 and 11,300 deaths, respectively
(5,6). Incidence and mortality rates for
cancer as the primary kidney disease (kidney
and renal pelvis combined, since data are not
available for a specific subsite) for the most
recent time period are for 1995. In 1995, the
age-adjusted incidence rate was 9.2 per
100,000, with rates in males twice those of
females (4 ). Incidence has been increasing
over time, with the increase in nonwhites
much greater than in whites (4). Mortality
rates reflect the same pattern as incidence;
however, rates are lower due to relatively
good survival. The age-adjusted mortality rate
in 1995 was 3.6 per 100,000, and showed a
gradual increase over the past 20 years (4).
The increasing mortality among nonwhites
over time was greater than that among whites
(4). Recent analysis of the National Cancer
Database (3) suggests that kidney cancers are
being diagnosed at an earlier stage of the
disease and with greater precision.

Risk Factors

A number of risk factors have been identified
within recent years for renal-cell carcinoma in
one national and one international multi-
center case—control study. The focus of this
discussion is on renal-cell carcinoma, since it
is the most predominant form of kidney
cancer. Risk factors are primarily hyperten-
sion status, diet, family history, and personal
lifestyle factors. Occupational factors have
been subject only to limited study; most
studies do not uniquely identify specific
chemical exposures. Renal-cell cancer is not
usually considered an occupationally related
cancer, as are Jung and bladder cancer (7).

In the latter cases, exposures are assessed
according to job category or class of agent.
The epidemiologic evidence examining TCE
exposure, specifically, will be discussed in the
next section.

The strongest evidence for which a causal
association can be inferred is between renal-cell
carcinoma and smoking,. Statistically significant
elevated risks for renal-cell carcinoma have been
consistently reported in several studies (8-11)
with cigarette smoking. Risks increased with
increasing duration and number of cigarettes
(pack-years), adding further support for a causal
association. As with other smoking-related can-
cers, risk is reduced among long-term former
smokers. One other study (72) additionally
reports an association between cigarette smok-
ing and carcinoma of the renal pelvis and
ureter. McLaughlin et al. (7) estimate that
between 24 and 30% of all renal cancer deaths
are attributable to smoking.

Associations between renal-cell carcinoma
and other etiologic agents are more variable
and less definitive than those for cigarette
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smoking. Limited data suggest that long-term
use of phenacetin-containing analgesics is asso-
ciated with an increased renal-cell carcinoma
risk (13-16). Abuse of analgesics containing
phenacetin has been causally associated with
renal pelvis and ureter cancer (/7). Having a
relative with a previous diagnosis of renal-cell
carcinoma has been identified in two studies
(7,10). Not unexpectedly, a past history of
kidney stones or kidney disease is also associ-
ated with renal-cell carcinoma, although these
observations may be biased due to differential
recall of past kidney disease between cases and
controls (7). Limited evidence exists for an
association between the use of diuretics and
other antihypertensive agents and renal-cell
carcinoma (18-22). Additionally, a history of
hypertension has been identified as another
risk factor (21). Hypertension, diuretic use,
and taking antihypertensive medication are
highly correlated, making it difficult to iden-
tify which factors may be more important.
Three recent studies (9,23,24) provide sup-
port for the hypothesis that diets high in meat
or fried meats are associated with an increase
in risk for renal-cell cancer and that diets high
in vegetable and fruit content are protective.
Body mass index was found to be a risk factor
among females, and to a lesser extent, among
males, with rate of weight change appearing
as an independent risk factor (25). Last, fairly
consistent findings have been reported for a
modest, positive association between the
number of births and risk for renal-cell carci-
noma and a protective effect with use of oral
contraceptives (26-28).

Only now are the human studies taking a
more serious examination of possible associa-
tions between renal-cell carcinoma and occu-
pational exposures. Most information on
occupation comes from case—control studies
where exposure is only crudely characterized.
Associations between kidney cancer and
occupational exposures or job categories that
have been reported in at least one study are
the following: truck drivers and those exposed
to gasoline (22,29,30); employment in the
iron or steel industry (31); with exposure to
gasoline (29-32), aviation fuel (33), or other
petroleum products (31); insecticides or her-
bicides (22); asbestos (31); cadmium (31);
and dry-cleaning solvents (31). The large
case—control studies are adequate for raising
hypotheses regarding possible associations;
however, they are severely limited when they
are used alone to support statements regard-
ing possible causal associations.

Cohort studies of petroleum workers have
not reported elevated risks with kidney cancer
(34). Alternatively, case—control studies of
kidney cancer are not as consistent; two
case—control studies report associations with
gasoline exposure (31,32), whereas a recent
case—control study of kidney cancer nested

among male petroleum workers did not show
any associations with exposure to petroleum
hydrocarbons (35). Some data indicate that
selected subgroups of males, such as
downstream and distribution workers and ser-
vice station workers, may have elevated kidney
cancer risk (36-38). The epidemiologic obser-
vations are of interest since male, but not
female, rats exposed to unleaded gasoline
developed renal-cell carcinoma. Further exper-
imentation showed that male rats were unique
in developing an accumulation of @, after
exposure to many halogenated hydrocarbon
solvents and this was necessary and essential
for development of kidney cancer (see below).
This mechanism is considered to be only rele-
vant in male rats and not in humans; thus,
renal-cell carcinoma developing by this mech-
anism is not considered a hazard to humans
(see discussion in section on 0iy,-globulin
nephropathy below).

An additional risk factor for renal-cell
cancer is genetic, and involves the von
Hippel-Lindau (VHL) tumor suppressor gene
(39). So-called VHL disease is a hereditary
cancer syndrome that is characterized by the
development of vascular tumors of the central
nervous system (CNS) and retina, pheo-
chromocytomas, pancreatic islet cell tumors,
endolympbhatic sac tumors, clear-cell renal car-
cinomas, and benign cysts affecting a variety
of organs (40). VHL disease can be caused by
germline mutations of the VHL gene located
on chromosome 3p25. Renal involvement is
central to VHL disease and has emerged as the
most prevalent cause of death (47). However,
VHL mutations in kidney cancer can be
somatic as well as germline (42).

Occupational and Other Human
Exposures to TCE and Renal Disease,
Including Cancer

There have been few studies that have exam-
ined exposure to TCE and development of
kidney disease. One case report exists of acute
renal failure, with normal liver function, in a
male worker opening bins containing 7.5 L of
a nearly pure solution of TCE (43). The
studies of Nagaya et al. (44) and Rasmussen
et al. (45) suggest kidney dysfunction among
male workers with exposure to TCE (44) or
solvents (45). Insight into possible TCE-asso-
ciated injury is limited, since only 30% of the
participants studied by Rasmussen et al. (45)
had TCE exposure. Additionally, both studies
were of a prevalence or cross-section design
and the most recent exposure was only
crudely assessed. No information was given
regarding historical exposures, a time period
considered more relevant for assessing kidney
toxicity. Another study of a small group of
male metal degreasers in Sweden (46)
observed no increase in N-acetyl-B-gluco-
saminidase (NAG) excretion into urine, and
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concluded that TCE was not nephrotoxic at
low exposure levels.

Briining et al. (47) obtained blood and
urine samples from a 17-year-old male who
ingested approximately 70 mL TCE in a sui-
cide attempt. The patient showed the well-
known symptoms of acute solvent
intoxication, including CNS depression,
tremor, general motor restlessness, and finally
coma. Cardiotoxicity, as evidenced by sinus
tachycardia and ectopias, was also observed,
which is consistent with the known ability of
halogenated hydrocarbons to sensitize the
myocardium to adrenergic transmitters. The
patient did not exhibit any of the standard
clinical parameters of nephrotoxicity, such as
increases in glucose and total protein excretion
or increases in serum creatinine or blood urea
nitrogen (BUN), during the initial 24 hr after
hospitalization. However, significant increases
in beta-2-microglobulin (3-2-MG), NAG, and
albumin excretion were observed, indicating
tubular damage. Sodium dodecy! sulfate—poly-
acrylamide gel electrophoresis analysis of uri-
nary proteins showed the increased presence of
low molecular weight proteins in the 10,000-
to 50,000-Da range, providing additional,
more specific evidence of tubular damage. This
study is, therefore, the first to demonstrate that
a single, oral dose of TCE can produce
nephrotoxicity in humans.

Briining et al. (48) performed a retrospec-
tive study on 39 workers who were exposed
to high levels of TCE from 1956 to 1975, to
investigate possible persistent nephrotoxic
effects of TCE. Concentrations of GSH $-
transferase (GST)-a, urinary excretion of
which is a marker of proximal tubular dam-
age, were elevated in the urine of TCE-
exposed workers but not in that of control
workers. Urinary excretion of GST-T, which
is a marker of distal tubular damage, was not
elevated in TCE-exposed workers. The
authors concluded that chronic exposure to
high doses of TCE causes persistent changes
to the proximal tubules and that GST-ot can
be used as a marker for quantitation of the
extent of renal damage.

The International Agency for Research on
Cancer (IARC) (49) recently evaluated the
epidemiologic evidence on TCE; kidney
cancer incidence and mortality were exam-
ined among other types of cancer. The overall
evaluation of cancer risk reported in the
IARC monograph (49) from dry cleaning in
general does not suggest an increase in the
risk for cancer of the kidney, although the
results of proportionate mortality studies and
of a case—control study indicate an increase in
risk associated with a history of work as a dry
cleaner. Elevations in relative risks for mortal-
ity from cancers of the urinary bladder,
esophagus, pancreas, lung, liver, and gall
bladder, and non-Hodgkin’s lymphoma were
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cited. Overall, the review group stated that
there is limited evidence in humans for the
carcinogenicity of occupational exposures in
dry cleaning, concluding that dry cleaning
entails exposures that are possibly carcinogenic
to humans (Group 2B). For TCE specifically,
the overall evaluation was that there is mized
evidence in humans for carcinogenicity of
trichloroethylene and sufficient evidence in
experimental animals for the carcinogenicity
of TCE, providing for an overall conclusion
that TCE is probably carcinogenic to humans
(Group 2A).

Eight studies reviewed by IARC examined
the relationship between TCE (or TCE with
other halogenated solvents) exposure and kid-
ney cancer mortality or incidence. Most
studies were of occupational exposures. Two
studies examined mortality and groundwater
exposure to TCE. Case—control studies of
kidney cancer were also evaluated. IARC
placed greater weight on observations from
three cohort studies (50-52) where no eleva-
tions in kidney cancer risks were noted, and
the two case—control studies reported diver-
gent results. JARC (49) noted that a study of
male German cardboard manufacturing
workers exposed to TCE (53) observed five
cases of renal cancer compared to none in the
comparison population. Four cases were of
renal-cell carcinoma and the fifth of cancer of
the renal pelvis. The Henschler et al. report
(53) presented, for the population studied,
standardized incidence rates (SIR) for kidney
cancer, using rates from the Danish Cancer
Registry and from the former German
Democratic Republic as comparisons. For
each comparison, a statistically significant ele-
vation in the SIR for kidney cancer was
noted. IARC (49) considered these findings
to be a cluster and concluded that kidney
cancer among these male workers needed fur-
ther study. The report of Henschler et al.
(53) has spurred much controversy (54-56);
even if the workers studied represent a cluster,
this warrants further study since several
human carcinogens were first recognized
through cluster investigations.

Two other reviews (57,58) were conducted
after that of IARC. Both examined a slightly
different set of studies than those of IARC and
from each other. Whereas Weiss (58) did not
explicitly draw conclusions about the kidney,
McLaughlin and Blot (57) concluded that
there is neither consistent nor convincing evi-
dence to support a causal relationship between
TCE exposure and renal-cell cancer.

Three reports have recently appeared in
the literature (59-61) that, when taken
together, add further evidence about an asso-
ciation between TCE and kidney cancer.
Blair et al. (59) updated the study of Spirtas
et al. (52) on the Hill Air Force Base (Ogden,
UT) maintenance workers exposed to TCE
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(62) and Morgan et al. (60) examined
mortality in another group of aircraft mainte-
nance workers. Whereas both Blair and
Morgan concluded that small numbers of
kidney cancer deaths limited their findings,
both studies reported elevated risks (not sta-
tistically significant) among those with TCE
exposure. Additionally, risk appeared to
increase with increasing cumulative exposure
in the study of Morgan et al. (60) but not in
that of Blair et al. (59). Further, the
case—control study of Vamvakas et al. (61)
noted a statistically significant odds ratio with
occupational exposure to TCE when com-
pared with accident controls with no TCE or
PER exposure. Risk increased with increasing
exposure (from an odds ratio of 6.6-11.4).

The reports of Briining et al. (47,48,
63-66) strengthen the epidemiologic evi-
dence between TCE and kidney cancer.
Briining et al. (65) reported a larger risk for
kidney cancer among those individuals with
specific GST isozymes M1 and T1, raising the
question of whether differential metabolism of
TCE may produce a greater quantity of or
more toxic metabolites. In the second study
(64), renal-cell carcinoma tissue from 23
patients [many of whom were cases in the
study of Vamvakas et al. (61)] with occupa-
tional history of very high exposure to TCE
were analyzed for somatic mutations in the
VHL gene. By contrast, renal-cell carcinoma
tissue from patients who were not exposed to
TCE exhibited a significantly lower (33-55%)
VHL mutation frequency. The VHL muta-
tions in these individuals are somatic and not
germline, since none of these patients had a
family history of VHL disease (67). Further,
mutational analysis of the VHL gene showed
a transition at nucleotide 454 (C > T) at
codon 81 in 35% of the patients, which
Briining et al. (66) believed to be different
from findings in patients with germline or
sporadic (no TCE exposure) renal cell carci-
nomas. Together, these data indicate that the
VHL gene is a susceptible and specific target
for TCE-induced renal carcinogenesis and
that these results provide further evidence that
the kidneys are targets in humans who are
occupationally exposed to high doses of TCE.
One note of caution, however, is that indus-
trial-grade TCE has often contained other
contaminating chemicals. It is unclear what
impact these contaminants may have had on
the development of renal cell carcinoma.

Bioassays for Kidney Cancer
in Laboratory Animals

TCE is known to cause cancer in laboratory
animals. Evidence of TCE carcinogenicity in
experimental animals includes findings of low
incidences of renal tumors in several strains of
male rats when the compound is adminis-
tered by oral gavage or by inhalation.
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Statistically significant increases in renal
tumors have not been observed in female rats,
although occasional occurrences of a rare
renal tubular-cell tumor have been reported
in some studies that also reveal increases in
these tumors in males. Kidney tumors are not
associated with exposure to TCE in mice or
hamsters, and not all carcinogenicity studies
in rats are consistent in demonstrating renal
tumors (68—73).

In a National Toxicology Program (NTP)
bioassay, groups of 50 male and 50 female
rats were administered 0, 500, or 1,000
mg/kg/day high-purity TCE by gavage in
corn oil vehicle 5 days a week for up to 103
weeks. Fifty male and 50 female rats were
used as untreated control groups. Three high-
dose males developed renal tubular-cell
adenocarcinoma. Two animals in the low-
dose male group developed renal tubular-cell
adenoma. Renal tubular-cell tumors are rare
in this strain of rats. Other observed kidney
tumors in this study included a transitional-
cell carcinoma of the renal pelvis in a low-
dose male, a carcinoma of the renal pelvis in a
high-dose male, a transitional-cell papilloma
of the renal pelvis in an untreated control
male, and a rare tubule adenocarcinoma in a
high-dose female. Toxic nephrosis was
observed in 96 of 98 treated males and in all
treated females, but not in vehicle-control
rats. Survival of treated male rats was signifi-
cantly reduced: 35 vehicle controls, 20 low-
dose rats, and 16 high-dose males were alive
at terminal sacrifice. Because of reduced sur-
vival, the statistical methods that adjust for
animals at risk or intercurrent mortality pro-
vide more meaningful results for risk analysis
than unadjusted statistical methods. Increase
in kidney tubular-cell adenocarcinoma inci-
dence in high-dose males was (3/16 or 19%)
compared to vehicle-control males (0/33 or
0%) at the end of the study. The small
increase of renal tubular-cell adenocarcino-
mas observed in high-dose male rats at termi-
nal sacrifice was statistically significant by life
table analysis and incidental tumor tests when
pairwise comparisons were made between the
dosed group and the vehicle-control group.
The life table analysis regards tumors in ani-
mals dying prior to terminal kill as being the
cause of death. The incidental tumor test
regards these lesions as nonfatal. Unadjusted
statistical methods such as the Fisher Exact
Test and Cochran-Armitage Trend Test com-
pare the overall incidence rates directly.

The NTP conducted a similar chronic
oral carcinogenicity bioassay on ACI, August,
Marshall, and Osborne-Mendel rat strains.
Groups of 50 males and 50 females were
administered 0, 500, or 1,000 mg/kg/day
purified TCE in corn oil by gavage, 5
days/week, for 103 weeks. Fifty male and 50
female rats were used as untreated controls.
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The survival of all treated groups was signifi-
cantly lower than that of controls. Oral
administration of TCE in this study was asso-
ciated with an increased incidence of renal
tubular-cell adenomas and adenocarcinomas.
Because of reduced survival, toxicity, and
deficiencies in conduct of the study, however,
the NTP concluded that the study was inade-
quate for assessing either the absence or pres-
ence of carcinogenicity, although they
reviewed the results as indicating renal toxic-
ity in all tested rat strains, including the
Fischer 344 (F344) rat studied in their 1986
bioassay. There was no difference in kidney
toxicity between males and females of any
strain. The histopathologic evaluations of the
kidneys of all five strains of rats have been
summarized (72-75). The toxic nephropathy
observed in these studies clearly does not pre-
sent as the spontaneous lesion occurring in
aging rats. Rather, the lesions are character-
ized by cytomegaly, karyomegaly, and toxic
nephrosis of the tubular epithelial cells in the
inner renal cortex. These lesions were not
observed in control animals. Severity of
cytomegaly was found to be proportional to
duration of dosing as observed in animals that
died early. The 1990 NTP report describes a
statistically significant increase in renal ade-
nomas in male Osborne-Mendel rats and the
increase in renal adenocarcinomas in F344
rats previously reported in the 1988 bioassay
report. Five of the six renal adenomas in low-
dose male Osborne-Mendel rats occurred
among the 17 rats alive at the end of the
study. One rare renal tubular-cell adenocarci-
noma was seen in a high-dose male Osborne-
Mendel rat in this study. The NTP also
noted the finding of one rare tubular-cell
adenocarcinoma in a male Osborne-Mendel
rat in a previous study (70).

Henschler et al. (68) administered pure
TCE (stabilized by an amine base) by inhala-
tion at 0, 100, and 500 ppm for 6 hr/day, 5
days per week, for 18 months to NMRI mice,
F344 rats, and Syrian hamsters of both sexes.
No significant increase in tumor formation
was observed in any species or dosing groups,
except for malignant lymphomas in female
mice. The authors concluded that their find-
ings provide no indication for a carcinogenic
potential of pure TCE.

Maltoni et al. (69) exposed groups of
130-145 Sprague-Dawley rats to 0, 100, 300,
or 600 ppm TCE (99.9% pure, containing no
epoxide) 7 hr/day, 5 days per week, for 104
weeks. Animals were observed for their life-
times. There was no difference in survival or
mean body weight among the rats exposed to
airborne concentrations of TCE when com-
pared to control rats. Renal tubular-cell
adenocarcinomas were observed in four high-
dose animals, three males and one female. No
tumors of this type were reported in the

lower-dose groups, in the concurrent control
animals, or in the more than 50,000 historical
control Sprague-Dawley rats used in that labo-
ratory. Maltoni et al. (69) also administered 0,
50, or 250 mg/kg TCE in olive oil by gavage
to groups of 30 male and 30 female Sprague-
Dawley rats, 4-5 days per week for 52 weeks.
The animals were observed for their lifetimes,
and none of them developed kidney tumors.
Although the kidney tumor increases in
male rats are not all statistically significant,
the findings are generally considered to be
biologically significant and important in an
assessment of potential human hazard
because renal tumors in rats are rare. That is,
such tumors are not often seen in large num-
bers of historical control animals. In some
instances, however, chemically induced male
rat kidney tumors are species- and gender-

specific and, therefore, of little importance in

human hazard evaluation. Thus, of particular
interest is the objective of the analysis pre-
sented in this paper to focus attention on
available data that address whether TCE-
induced male rat kidney tumors may be the
result of mechanisms or a mode-of-action
operative, in theory, in humans.

Based on the above-mentioned long-term
carcinogenicity studies, both Goeptar et al.
(76) and Briining et al. (63) have suggested
that chronic cellular injury is a necessary pre-
requisite for production of renal tumors. In a
study of hospital patients diagnosed with
renal-cell cancer, those who had previous,
documented exposure to TCE had evidence
of average to severe tubular damage at higher
rates than those who had no previous expo-
sure to TCE (63).

The issue of nephrotoxicity and chronic
cellular injury in relation to development of
renal tumors deserves further comment. It is
clear from the studies in rodents that renal-
cell tumors do not occur in the absence of
some kidney damage. The kidneys are
highly susceptible to damage due to their
high blood flow and the presence of myriad
transport mechanisms that allow renal
epithelial cells, particularly those of the
proximal tubule, to concentrate bloodborne
and filtered chemicals to high intracellular
levels. Moreover, renal epithelial cells con-
tain a large array of bioactivating enzymes,
both those that are similar to the xenobiotic-
metabolizing enzymes in the liver and those
that are unique to the kidneys, that metabo-
lize chemicals to reactive and toxic species
(77,78). Although one can conclude that
the kidneys are a minor target organ in vivo
and that risk is low, because the incidence of
renal tumors is typically low, the incidence
of nephrotoxicity is much higher. The
hypothesis of Goeptar et al. (76) and
Briining et al. (63) that renal cellular injury
is a prerequisite for producing renal tumors
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suggests further that the injury is followed
by induction of repair processes, which then
leads to cellular proliferation. However, if
the extent of the nephrotoxicity is greater,
renal cells will be irreversibly injured and the
tissue will not be capable of activating repair
processes. In that case, then, cellular prolif-
eration and carcinogenesis will not be
observed, and the risk based on tumor
incidence will be underestimated.

In the sections that follow, potential
biochemical mechanisms or modes of action
of TCE in producing renal-cell cancer will
be discussed.

Toxic and Reactive Metabolites
of TCE That May Be Important
in Renal Toxicity of TCE

Oxidative Pathway of TCE Metabolism

TCE is metabolized by two general metabolic
pathways, an oxidative pathway whose initial
step is catalyzed by cytochrome P450 (P450),
and a GSH-dependent pathway whose initial
step is catalyzed by GST. Key oxidative
metabolites that may be associated with toxic-
ity and tumorigenesis include trichloroacetate
(TCA), dichloroacetate (DCA), and chloral
hydrate (CH). Although formation of these
metabolites by P450 and other oxidative
enzymes has generally been emphasized in
considerations of hepatic metabolism and
liver injury, renal proximal tubular cells also
possess many of the same isoforms of P450
that are found in the liver parenchymal cells,
including CYP2E1, which is the primary iso-
form believed to catalyze oxidation of TCE
(79,80). Hence, these metabolites can be
formed by renal enzymes and may play some
role in TCE-induced renal injury.

Little investigation into the role of P450-
derived metabolites of TCE in TCE-induced
renal injury has been undertaken. It is believed
that TCA and DCA are the primary metabo-
lites that cause hepatic injury and liver tumors.
Although these two acids were not acutely
cytotoxic in isolated rat kidney cells, they were
potent inhibitors of mitochondrial state 3 res-
piration (81). This suggests that their forma-
tion in kidney could lead to alterations in renal
cellular function and, if the kidneys were
exposed chronically to even small amounts of
TCA or DCA, to cytotoxicity or transforma-
tion and tumorigenesis. Further study of the
potential role of TCA or DCA in renal effects
resulting from TCE exposure are necessary.

GSH Conjugation Pathway
of TCE Metabolism

It is generally believed that metabolites of TCE
derived from the GSH conjugation pathway
are responsible for the majority of the renal
effects of TCE. Key metabolites that may be
associated with toxicity and tumorigenesis
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include DCVG, $-(1,2-dichlorovinyl)-L-
cysteine (DCVC), and DCVC sulfoxide.
Special aspects of renal and cellular handling of
GSH conjugates and their associated metabo-
lites that make the kidneys particularly suscep-
tible to acute and chronic injury will be briefly
discussed. These aspects include tissue-specific
transport mechanisms and enzymatic reac-
tions. Although these points are discussed in
greater detail in the article on “Metabolism of
Trichloroethylene” (1), it is important to state
them here because of their critical importance
in understanding mechanisms of renal injury
and carcinogenesis.

There is no question that DCVC and the
reactive species that are generated from its
metabolism by either the B-lyase or the cys-
teine conjugate S-oxidase, are nephrotoxic
(76). The critical question then is not
whether the GSH-derived metabolites of
TCE can produce nephrotoxicity, because the
answer to that is definitively yes, but rather
whether the doses of TCE or DCVG that get
to the kidneys are sufficient to generate
enough reactive species to produce regulatory
or toxic alterations. The ability of these reac-
tive metabolites to produce nephrocarcino-
genicity or renal-cell cancer, however, has not
been directly demonstrated. Cancer bioassays
with DCVG or DCVC are needed to address
this question. Additionally, it has usually
been assumed that the majority or all of TCE
conjugation with GSH occurs in the liver, as
tissue concentrations of the GSTs are much
higher there than in other tissues, and a frac-
tion of the DCVG formed or other metabo-
lites, such as the mercapturate, eventually gets
to the kidneys by interorgan translocation
pathways. Lash et al. (81,82) recently
showed, however, that the kidneys of rats can
also catalyze conjugation of TCE with GSH
to form DCVG, although at rates that are
10-20% of those in the liver. Hence, it is not
necessary to invoke interorgan pathways to
explain formation of nephrotoxic metabolites
from TCE.

Recently, Bruckner and colleagues (83)
developed a physiologically based pharmaco-
kinetic (PBPK) model for estimation of tis-
sue concentrations of TCE after intra-arterial
injection, bolus oral gavage, and inhalation
exposure. A summary of estimates of maxi-
mal tissue concentrations and area under the
curve (AUC) values for TCE in liver and
kidney by the three exposure routes is given
in Table 1. There are several striking findings
in these estimates. With either the intra-arte-
rial injection or oral gavage exposure route,
maximal tissue concentrations and AUC val-
ues in the kidneys, although lower than those
in the liver, are still significant, being approx-
imately 60% or 20%, respectively, of those
in the liver. By inhalation, however, both
Conax and AUC values for the kidneys were
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approximately 3-fold higher than those for
the liver. Actual measurements of these val-
ues agreed very closely with the PBPK esti-
mates. These data demonstrate that the
kidneys are exposed to significant amounts of
the parent chemical and, taken together with
data reported by Lash et al. (81,82), that for-
mation of oxidative or GSH-derived metabo-
lites from TCE can occur within the kidneys
at appreciable rates.

Formic Acid Excretion

in TCE-Exposed Rats

Recently, Green et al. (84) have suggested an
alternative mechanism for kidney damage
induced by long-term exposure to TCE. Rats
that were given either single or multiple doses
of TCE, either by gavage or inhalation,
excreted large amounts of formic acid in the
urine. The amount of formic acid excreted
after a single exposure to 500 ppm TCE was
reported to be comparable to that observed
after a 500 mg/kg dose of formic acid itself.
Exposure of rats to 250 or 500 ppm TCE
over 28 days resulted in urinary excretion of
large amounts of formic acid, increased uri-
nary excretion of ammonia, and decreased
urinary pH, but no morphological damage to
liver or kidney. Furthermore, formic acid was
shown not to be a metabolite of TCE. Based
on these results and the known nephrotoxic-
ity of formic acid, the authors concluded that
urinary excretion of high amounts of formic
acid after exposure to TCE may contribute to
the renal damage attributed to GSH-derived
metabolites of TCE.

Although the concept that metabolic
perturbations resulting in formation of high
amounts of formic acid as a mode of action
by which TCE produces kidney damage is an
intriguing hypothesis, this proposal cannot
account for much data that indicate a require-
ment for B-lyase-dependent metabolism of
TCE to produce nephrotoxicity. Moreover,
there is no evidence in the literature that
formic acid can produce renal tumors.
Hence, although formic acid formation may
contribute to TCE-induced renal damage,
this is not likely to be a significant mode of
action in TCE-induced kidney tumorigenesis.

Table 1. TCE pharmacokinetic parameter estimates for
liver and kidney after exposure of rats by intra-arterial
injection, bolus oral gavage, or inhalation.?

Liver
Exposure Crax  AUC

Kidney
Cmax  AUC

Intra-arterial injection 5.3 88 32 56
Bolus oral gavage 9.1 124 19 33
Inhalation 0.4 46 15 159

aMale Sprague-Dawley rats were exposed to TCE by one of
three routes: intra-arterial injection (7.2 mg/kg body weight),
bolus oral gavage (8 mg/kg body weight), or inhalation (2-hr
inhalation of 50 ppm TCE). Units of Cpa, = pg/g. Units of AUC =
ug x min/mL. Data reported in Varkonyi et al. (83).
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Proposed Modes of Renal
Carcinogenicity of TCE

in Rodents and Their
Relevance to Humans

This section discusses four major mechanisms
by which TCE may cause renal tumors.
These include peroxisome proliferation, accu-
mulation of the male rat-specific protein
0y,-globulin, direct genotoxicity, and acute
or chronic toxicity. In some cases, informa-
tion is available using both TCE and the pre-
sumed penultimate toxic metabolite DCVC
as the treatment agent. In other cases, how-
ever, only data with DCVC as the treatment
agent are available, so that inferences and
extrapolations relating these data back to the
parent compound TCE must be made.
Under the subheading of acute and chronic
mechanisms of nephrotoxicity and cytotoxic-
ity, several biochemical processes are dis-
cussed with regard to their relevance in
DCVC- and/or TCE-induced kidney tumori-
genesis. Although much of the mechanistic
data have been obtained with rodents or with
tissue or cells derived from rodents, emphasis
is made where data have been obtained in
humans or from human cells or tissue.

Peroxisome Proliferation

Generation of chloroacetates from TCE may
arise by both oxidative metabolism (i.e.,
cytochrome P450) and by further metabolism
of DCVC. Since chloroacetates are known to
produce hepatic peroxisome proliferation,
renal enzymes also generate chloroacetates,
and proximal tubular epithelial cells are rela-
tively rich in peroxisomes, peroxisome prolif-
eration is a plausible mode of action for TCE.
As discussed above and in the article on
“Mode of Action for Liver Tumorigenesis”
(85), TCA and DCA have been identified as
the metabolites of TCE that are responsible
for peroxisome proliferation in male rat liver
(86,87).

In relation to the mode of action of TCE
in the kidney and the potential risk for
humans, three central issues are 2) whether
significant formation of TCA and DCA
occurs in the kidneys, §) whether peroxisome
proliferation is induced to a significant extent
in the renal proximal tubules, and ¢) whether
this mechanism occurs in humans. Regarding
the first issue, studies are underway to quan-
tify oxidative metabolism of TCE in renal
cells and microsomes from rat, mouse, and
human kidney. However, no information is
available at present to allow assessment of the
quantitative significance of this pathway in
the kidneys from rodents or humans.

The second issue, namely that of whether
TCE induces peroxisome proliferation in the
kidneys, has been addressed directly in only
one study (88), whereas other studies have
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assessed peroxisome proliferation with either
a related chemical or with a presumed
metabolite of TCE (89). Goldsworthy and
Popp (88) investigated the ability of TCE
and perchloroethylene (PER) to induce per-
oxisome proliferation in liver and kidney of
rats and mice, using increases in cyanide-
insensitive palmitoyl-CoA oxidation activity
as a marker enzyme. Both TCE and PER ele-
vated enzyme activity in mouse liver and kid-
ney, whereas only TCE elevated activity in rat
liver and kidney. They concluded that there is
an association between peroxisome prolifera-
tion and hepatic tumors in mice but sug-
gested that peroxisome proliferation does not
correlate with halogenated hydrocarbon-
induced renal carcinogenicity. Odum et al.
(89) studied the role of TCA generated from
PER in tumorigenesis and peroxisome prolif-
eration in liver and kidneys from male and
female F344 rats and B6C3F; mice. Due to
the pharmacokinetics of PER, male mice
were exposed to 6.7-fold higher amounts of
TCA than male rats, and peroxisome prolifer-
ation was only observed in male mouse liver.
Hence, they concluded that peroxisome pro-
liferation does not play a role in the apparent
carcinogenicity of PER in male rat kidney.

Other studies on peroxisome proliferation
suggest that peroxisomes are differentially reg-
ulated in liver and kidney (90,91). For exam-
ple, di-(2-ethylhexyl)phthalate (92), clofibrate
(93), ciprofibrate (94), ethionine (95), and
valproate (96) all caused marked peroxisome
proliferation in rat livers and caused smaller
extents of peroxisome proliferation in rat kid-
neys. Diets high in fish oil were able to mod-
estly induce peroxisome proliferation in
mouse livers but not in mouse kidneys.

Hence, from these studies we can conclude
that 4) if renal levels of accumulation of TCA
from TCE are similarly lower than hepatic
levels of accumulation of TCA as was found
for PER, then peroxisome proliferation is
unlikely to be important in the kidney for
TCE; and 6) renal peroxisomes are generally
less responsive to peroxisome proliferators
than hepatic peroxisomes, which also makes a
role for peroxisome proliferation in TCE-
induced nephrocarcinogenicity unlikely.

As for the third issue, there has been much
debate about the significance of peroxisome
proliferation in human liver. A prevailing view
is that peroxisome proliferation is likely to be
largely a rodent-specific response, with primate
species including man being markedly less
responsive to drug-induced peroxisome prolif-
eration than rodents, and that peroxisome pro-
liferation either does not occur or occurs to
much a smaller extent in humans (97,98).

u-Globulin Nephropathy
0y, is the major component of the urinary
protein load in male rats and is unique to

male rats, although homologous proteins exist
in other species, including humans. Renal
proximal tubules reabsorb protein from the
glomerular filtrate, and toxicants or patholog-
ical conditions that interfere with this process
cause an excessive accumulation of @, in
lysosomes of renal proximal tubular cells.
However, a similar phenomenon has not
been observed in female rats or in other
species. A number of chemicals, many of
them halogenated organic solvents, have been
shown to cause the so-called hyaline (protein)
droplet nephropathy in male rats. The pro-
posed steps for the induction of nephropathy
and renal tumors by chemicals that induce

0., nephropathy include the following:

* Protein droplets containing 0l,, increase
in number and size in renal proximal con-
voluted tubular cells of male rats exposed
to certain halogenated hydrocarbons. o,
is a low molecular weight protein (M, =
18,700 Da) that is synthesized in the liver
of mature male rats under androgenic
control, and is not synthesized in the liv-
ers of immature male rats, the livers of
female rats, or the livers of either sex of
several other species, including mice or
humans. Hydrocarbons or their metabo-
lites that induce the response bind irre-
versibly to 0y, resulting in the lysosomal
degradation of the complex (99).

¢ The excessive accumulation of reabsorbed
proteins in secondary lysosomes of the
renal proximal convoluted tubules (S,
segment) is then thought to cause lyso-
somal dysfunction and cellular necrosis.

* Intratubular granular casts of necrotic
cellular debris then accumulate at the
junction of the pars recta of the proximal
tubules (S5 segment) and the thin loop of
Henle.

* Regenerative cellular proliferation is then
induced in response to the loss of cells
from the S, segment of the proximal
tubules.

*  The increased cellular proliferation is then
thought to cause development of renal-
cell tumors due to increases in DNA
damage in replicating cells.

Goldsworthy et al. (100) examined the
ability of TCE, PER, and pentachloroethane
to induce 0, accumulation, protein droplet
nephropathy, and cellular proliferation in
the kidneys of male and female F344 rats.
Both PER and pentachloroethane produced
accumulation of 0y, in male but not female
rats, and this correlated with both protein
droplet nephropathy and increases in cellular
proliferation. In contrast, TCE did not
induce increases in 0y, and did not stimu-
late cellular proliferation. Hence, they con-
cluded that the mechanism of TCE-induced
nephrocarcinogenicity must differ from that
of PER.
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Furthermore, Melnick (10I) proposed
that the accumulation of o, in kidneys of
male rats due to exposure to certain halo-
genated hydrocarbons and the consequent
nephropathy and induction of cellular prolif-
eration do not explain the male rat-specific
nephrocarcinogenicity of these chemicals.
Rather, Melnick (101) suggested that by
binding halogenated hydrocarbons, o, may
act as a transport protein to increase delivery
of the hydrocarbon to the target tissue. The
paper by Melnick (10I) generated some con-
troversy, as it contrasted directly with the
mechanism proposed by Lehman-McKeeman
et al. (99) and others. In response to
Melnick’s proposed alternative mechanism,
the proponents of the generally accepted
mechanism published a commentary (102)
arguing that no experimental evidence exists
to support the alternative mechanism and that
the widely accepted mechanism of 0ty,-medi-
ated renal injury is supported. They addition-
ally emphasized that the decision of the U.S.
Environmental Protection Agency (U.S. EPA)
to accept the widely accepted mechanism
allowed them to appropriately conclude that
the 0, phenomenon is largely male rat spe-
cific and is not relevant to humans. Melnick
(103) replied that there is evidence for an
alternative mechanism of action and recom-
mended that rather than conclude that this
process is irrelevant to humans, one should
conclude that species differences in transport
and disposition of chemicals alters delivery of
toxic chemicals to the target organ. He
emphasized that functionally analogous
proteins to 0.y, are present in humans.

Nonetheless, the prevailing view is that the
0y, hypothesis is male rat specific and that
this mechanism is not relevant to humans
(104). The o, found in male rats is struc-
turally related to a group of transport proteins,
many of which are found in humans. The
proteins of this family of about 20 proteins,
called lipocalins, are similar in molecular
weight, have some sequence homology, and
some are known to have tertiary structure sim-
ilar to 0y,. The only protein with a known
physiological function is retinol-binding pro-
tein, although all the proteins of the family are
thought to be carriers of lipophilic molecules.
Since concentrations of these homologous
proteins in human urine are well below those
of oy, that are found in male rats, it is highly
unlikely that enough protein could accumu-
late in human kidney to produce the same
sort of hyaline droplet nephropathy that is
seen in the male rat (105). Hence, accumula-
tion of oy, would not appear to be relevant
for TCE-induced nephrocarcinogenicity and
is likely not relevant for human health risk
assessment for TCE.

In spite of the decision of the U.S. EPA
and the report of the National Research
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Council, considerable controversy still exists
in the scientific community regarding both
the mechanism of renal carcinogenesis
induced by chemicals that produce o, and
the relevance of this to human health risk
assessment. This point is illustrated by a the
publication of a recent series of articles and
commentaries (106-112).
Genotoxicity
This section presents evidence for the role of
DNA damage and mutations in TCE-induced
renal carcinogenesis. Data have been obtained
with either TCE or with the presumed, penul-
timate nephrotoxic and nephrocarcinogenic
metabolite, DCVC, on bacterial mutagenesis,
DNA adduct formation (both nuclear and
mitochondrial), unscheduled DNA synthesis
(UDS), DNA strand breaks, cell proliferation,
and oncogene activation. Data on UDS, cell
proliferation, and oncogene activation are pre-
sented below in the section “Acute and
Chronic Nephrotoxicity and Cytotoxicity.”

Evidence for DNA damage or mutagen-
esis with TCE administration. Studies on
the mutagenicity of TCE have been per-
formed in bacteria, fungi, yeast, and in cul-
tured mammalian cells. TCE was not
mutagenic in a bacterial mutagenicity assay
using Salmonella typhymurium TA100 (113)
nor were his* revertants detected in S. gyphy-
murium TA100 in the presence of rat kidney
S9 fraction (/14). TCE was weakly muta-
genic in the mold Aspergillus nidulans when it
was in the growing phase only (/15). In cul-
tured mammalian cells, TCE did not induce
sister chromatid exchange in Chinese
Hamster ovary cells (/16) and did not
induce DNA repair in primary cultures of rat
hepatocytes (117). Furthermore, studies in
lymphocytes of workers exposed to TCE did
not provide any evidence of chromosomal
damage at TCE exposure levels of up to 30
ppm (118). Hence, there does not appear to
be any convincing evidence that TCE is
mutagenic or genotoxic. However, it should
be pointed out that there are many confound-
ing factors in some of these mutagenicity
studies, such as the presence of mutagenic sta-
bilizers in the preparations of TCE, and that
a thorough investigation of TCE-induced
DNA damage in cells from the various target
organs, particularly the liver and kidneys, has
not been performed. An important considera-
tion in evaluation of these results is the activ-
ity of enzymes of the mercapturate and
B-lyase pathways in the bacterial strains and
other systems used to detect mutations. A
negative response may simply be due to the
absence of the necessary enzymes for the
complete metabolism of TCE.

Evidence for DNA damage or mutagen-
esis with DCVG or DCVC administration.

Several studies have demonstrated that either
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DCVG or DCVC are mutagenic in bacterial
strains by the Ames test. Dekant et al. (119)
showed that DCVC, $-(1,2,2-trichlorovinyl)-
L-cysteine (TCVC), and $-(1,2,3,4,4-penta-
chlorobutadienyl)-L-cysteine (PCBC), the
cysteine conjugates of TCE, PER, and hexa-
chloro-1,3-butadiene (HCBD), respectively,
are all mutagenic in three strains of
S. typhimurium (TA100, TA2638, TA98) by
the Ames test. Similarly, Vamvakas et al.
(120) showed that both DCVG and DCVC
are mutagenic in S. gyphimurium TA2638.
Moreover, both studies showed that muta-
genicity was decreased by preincubation with
aminooxyacetic acid (AOAA), demonstrating
a requirement for metabolism by the B-lyase
to generate a mutagenic molecule. Vamvakas
et al. (120) also showed that the mutagenicity
of DCVG was potentiated by addition of a
rat kidney fraction that contains a high con-
tent of Y-glutamyltransferase (GGT), which is
consistent with the presence of low GGT
activity in the bacterial strain. Commandeur
et al. (121) also compared the mutagenicity
of the 1,2- and 2,2-isomers of DCVC and
found that the 1,2-isomer was significantly
more mutagenic than the 2,2-isomer and that
this correlated with the 3- to 4-fold higher
B-lyase activity with the 1,2-isomer. Hence,
all three of these studies demonstrated the
presence of at least some activity of the neces-
sary enzymes, including the B-lyase, in the
mutagenicity test systems.

More direct measures of genotoxicity of
GSH-derived metabolites of TCE have also
been obtained. Vamvakas and colleagues
(122) observed UDS and micronucleus for-
mation in Syrian hamster embryo fibroblasts,
which were inhibited by AOAA, and UDS in
LLC-PK; cells (123). In the study in LLC-
PK; cells, an immortalized cell line derived
from porcine proximal tubules, dose-
dependent induction of UDS was also
observed with TCVC and PCBC. In another
study with LLC-PK| cells, Vamvakas et al.
(124) showed that DCVC induced DNA
double-strand breaks, which were attributed
to activation of Ca?*- and Mg?*-dependent
endonucleases, and an increase in poly(ADP)-
ribosylation of nuclear proteins.

Green and Odum (725) compared the
cytotoxicity and mutagenicity of a series of
nephrotoxic cysteine conjugates to determine
structural requirements for mutagenicity.
Cysteine conjugates of HCBD, 5-(1,1,2,2-
tetrafluoroethyl)-L-cysteine (TFEC), hexa-
fluoropropene, TCE, and PER were
compared. With this limited number of com-
pounds, it became clear that conjugates of
chloroalkenes were both nephrotoxic and
mutagenic, whereas conjugates of fluoro-
alkenes were similarly nephrotoxic but were
not mutagenic. Hence, a chlorine is required
as a leaving group to generate the reactive

231



LASH ET AL.

species that can bind to or otherwise alter
cellular DNA.

Conclusions of a recent study by Vélkel
and Dekant (126) contrast with those above.
These authors studied the reactivity of
chlorothioketene (the ultimate reactive
species generated from DCVC) with DNA
bases in both organic and aqueous solvents.
$-(1,2-Dichlorovinyl)thioacetate, which gen-
erates chlorothioketene, reacted quite poorly
with cytosine in an aqueous solution. The
authors concluded, based on theoretical con-
siderations as well as the cytosine adduct
results, that “experimental demonstration of
DNA adduct formation in the kidney after
administration of TCE or PER to rodents
has to be considered very difficult, if not
impossible.” This conclusion implies that a
genotoxic mechanism of action for DCVC is
highly unlikely. However, there are at least
two potential problems with the interpreta-
tion by Vélkel and Dekant. First, an aqueous
solution such as that used in their study does
not adequately replicate the intracellular
environment that would be found in the
intact cell. Second, only adducts with cyto-
sine were studied. It is possible that adducts
with other bases might be energetically more
favorable. Nonetheless, these results provide
a starting point to question the viability of a
genotoxic mode of action based on chem-
istry. Additional studies are necessary to
more fully assess the chemical basis of
DCVC-induced genotoxicity.

Acute and Chronic Nephrotoxicity
and Cytotoxicity

A potential nongenotoxic mode of action for
TCE involves repeated events of cellular
necrosis and activation of repair processes that
lead to cellular proliferation. This section
reviews data on mechanisms of cytotoxicity
induced by TCE or GSH conjugate-derived
metabolites of TCE in renal proximal tubular
cells from both rodents and humans. Both
acute and chronic exposures have been per-
formed, using both iz vive exposures and in
vitro models such as freshly isolated cells and
cell cultures. Most of the in vivo and in vitro
studies aimed at elucidating biochemical
modes of action in the kidney have focused
on DCVG or DCVC rather than the parent
compound, since most of the available data
indicate that it is flux through the GSH con-
jugation pathway that generates the reactive
species that are responsible for nephrotoxicity
and potentially for nephrocarcinogenicity. In
contrast, a limited number of in vivo or in
vitro toxicity studies have been performed
with TCE itself. Virtually all the published
data on administration of TCE to laboratory
animals have involved cancer bioassays.
Consequently, only a few mechanistic studies
using the parent chemical are available.
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Acute and chronic nephrotoxicity:
in vivo studies. Chakrabarty and Tuchweber
(127) studied the acute nephrotoxicity of
TCE in male F344 rats, administered either
by an intraperitoneal injection of TCE in corn
oil or by inhalation. By either route of admin-
istration, TCE produced elevations in urinary
NAG, GGT, glucose excretion, and BUN, all
of which are characteristic signs of proximal
tubular damage. Increased excretion of high
molecular weight protein in the urine was also
detected, suggesting some glomerular injury.

Cojocel et al. (128) assessed the role of
oxidative stress in TCE-induced nephrotoxic-
ity after in vivo administration of TCE to
male NMRI mice by intraperitoneal injec-
tion. TCE depleted renal cortical GSH con-
tent but not hepatic GSH content, and
produced elevations in renal cortical content
of malondialdehyde (MDA) and ethane expi-
ration, which are indicators of lipid peroxida-
tion. Under the same conditions, no changes
were observed in hepatic MDA levels. A dose-
dependent increase in BUN levels was also
observed, confirming the decrement in renal
function induced by TCE. Prior depletion of
GSH content with buthionine sulfoximine
enhanced the effect of TCE on renal cortical
MDA content.

In a limited chronic toxicity study of
DCVC in rats, Terracini and Parker (129)
found large, abnormal nuclei in renal tubular
cells. Jaffe et al. (130) performed a similar,
more detailed chronic toxicity study in male
Swiss-Webster mice. DCVC (0.01, 0.05, and
0.1 mg/mL) was administered in the drinking
water over a period of up to 37 weeks. The
two higher concentrations of DCVC pro-
duced a clear retardation of growth by 21
weeks and by 26 weeks, cytomegaly, nuclear
hyperchromatism, and multiple nucleoli were
found in cells of the pars recta of the proximal
tubules. At later time points, renal tubular
atrophy and interstitial fibrosis were observed.
No effects were seen in the liver, consistent
with the known target-organ specificity.

In vivo, acute exposures of laboratory
animals to either DCVG or DCVC result in
clear signs of renal proximal tubular injury:
Elfarra et al. (/31) found that both DCVG
and DCVC administered to male F344 rats
by intraperitoneal injections in isotonic
saline resulted in elevations in BUN and uri-
nary glucose excretion. Furthermore, inhibi-
tion of renal GGT activity with acivicin
protected rats from DCVG-induced nephro-
toxicity. In addition, both the B-lyase
inhibitor AOAA and the renal organic anion
transport inhibitor probenecid provided pro-
tection from DCVC, demonstrating a
requirement for metabolism of DCVG to the
cysteine conjugate by the action of renal
GGT and dipeptidase, uptake into the renal
cell by the organic anion transporter, and

subsequent activation by the B-lyase. This
conclusion was supported further by showing
that the o-methyl analog of DCVC, which
cannot undergo a B-elimination reaction due
to the presence of the methyl group, was not
nephrotoxic.

Darnerud et al. (132) showed similar
findings in female C57BL mice, using cova-
lent binding of radiolabeled DCVC to acid-
insoluble renal tissue and histopathology as
measures of nephrotoxicity. GSH depletion
or addition of probenecid diminished DCVC
covalent binding and nephrotoxicity, indicat-
ing a role for oxidative stress and organic
anion transport in DCVC-induced nephro-
toxicity (see below).

Several studies on the isomeric specificity
of DCVC-induced nephrotoxicity showed
that the L-isomer is more potent than the
D-isomer (133,134) and that the 1,2-isomer
is more potent than the 2,2-isomer (135).
These results are consistent with the known
enzymology of DCVC bioactivation and with
the isomer specificity studies on DCVC-
induced mutagenicity described above.

Acute cytotoxicity: in vitro studies.
Chakrabarti and Tuchweber (127) showed
that accumulation of aminohippurate by
renal cortical slices, which is often used as an
indicator of proximal tubular function, was
inhibited at 24 hr after intraperitoneal
administration of 22 mmol TCE/kg to male
F344 rats.

In addition to the higher susceptibility of
male rats to TCE-induced nephrocarcino-
genicity and nephrotoxicity, isolated renal
cortical cells from male F344 rats are more
susceptible to acute cytotoxicity from TCE
than cells from female rats. As shown in
Figure 1, TCE caused a modest increase in
lactate dehydrogenase (LDH) release from
male rat kidney cells but had no significant
effect on LDH release from female rat kidney
cells. Similar, although more pronounced
effects were observed with PER (Figure 1C,
D). PER, which differs from TCE only by
the presence of a fourth chlorine atom,
undergoes bioactivation reactions similar to
TCE, forming a GSH conjugate that through
subsequent renal metabolism yields a nephro-
toxic and nephrocarcinogenic reactive species
(136,137). Hence, the results from the
in vitro model system on sex dependence of
susceptibility to TCE and PER agree with the
in vivo data.

In contrast to these results with the parent
compounds, kidney cells from male rats
(81,138), or an established renal cell line
(139) incubated with DCVG or DCVC
exhibit much greater amounts of LDH release
than the parent compounds. Moreover, as
shown in Figure 2, DCVC-induced cytotoxic-
ity is modestly higher in kidney cells from
male rats compared to female rats, although
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the dose—response relationship is rather
complex. Hence, the same general sex depen-
dence of susceptibility that was observed for
the parent compound is observed for the
penultimate, cytotoxic metabolite.
Preparations of renal tissue from the
rabbit have also been used as in vitro models
by some groups to study cysteine conjugate-
induced nephrotoxicity. In general, the rab-
bit kidney cells or tubules seem to exhibit
similar sensitivities to DCVC as those from
the rat. Wolfgang et al. (/40) found that
DCVC was rapidly taken up by cortical slices
from rabbit kidney and within 1 hr 40% of
the DCVC was covalently bound to the tis-
sue. Toxicity was evidenced by release of
brush-border membrane enzymes (GGT,
alkaline phosphatase) during the first 4 hr
after exposure and by histopathology and
electron microscopy. Within 4-8 hr, necrosis
of the S3 segments of the proximal tubules
was evident, and this progressed by 12 hr to
encompass all segments of the proximal
tubule. Mitochondrial and brush-border
membrane damage were evident biochemi-
cally within less than 1 hr and morphologi-
cally by 6 hr. Irreversible cellular injury was
concluded to occur within 30 min. In two
similar studies in suspensions of proximal
tubular fragments from rabbit kidney,
Hassall et al. (141) and Groves et al. (142)
showed that DCVC produced the same types
of effects as seen in kidney slices. Hassall et al.
(141) also demonstrated an important role for
tubular cell concentrations of GSH in modu-
lating the ability of DCVC to inhibit tubular
active transport, suggesting a role for oxidative
stress as a mode of action for DCVC (see
below). Groves et al. (142) also compared the
cytotoxicity of DCVC with that of a nephro-
toxic haloalkyl cysteine conjugate, TFEC, and
found, similar to the mutagenicity studies
described above, that haloalkenyl cysteine
conjugates with chloride-leaving groups are
more potent than haloalkyl cysteine conju-
gates with only fluoride-leaving groups.
Validation of the primary role of the
B-lyase in the bioactivation and cytotoxicity
of DCVG and DCVC in human kidney is
supported by the purification of the enzyme
activity from human kidney cytosol (143)
and the characterization of DCVG- and
DCVC-induced cytotoxicity in primary cul-
tures of proximal tubular cells from human
kidney (144). Activity of the purified enzyme
and that in the primary cell cultures was sen-
sitive to AOAA; cytotoxicity of DCVC was
diminished by AOAA. Hence, the B-lyase
pathway occurs in human proximal tubular
cells and can mediate the cytotoxicity
of DCVC. In contrast to these results,
Cummings and Lash (145) recently found
that acute cytotoxicity induced by DCVC in

freshly isolated human proximal tubular cells
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A.TCE: Male Rat Kidney Cells. B. TCE: Female Rat Kidney Cells.
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Figure 1. Time and concentration dependence of cytotoxicity of TCE and PER in isolated kidney cells from male and
female rats. Isolated renal cortical cells (2 to 3 x 10° cells/mL) were obtained by collagenase perfusion of kidneys
from male or female F344 rats. Cell suspensions were incubated with the indicated concentrations of TCE (A, B) or
PER (C, D) for up to 3 hr at 37°C on a metabolic shaking water bath. TCE and PER were dissolved in ethanol (final
ethanol concentration < 1%). At the indicated times, aliquots were removed for measurement of lactate dehydroge-
nase (LDH) release. Results are the means of incubations from 3 or 4 separate cell preparations.

A. DCVC: Male Rat Kidney Cells. B. DCVC: Female Rat Kidney Cells.
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Figure 2. Time and concentration dependence of cytotoxicity of DCVC in isolated kidney cells from male and female
rats. Isolated renal cortical cells (2 to 3 x 105 cells/mL) were obtained by collagenase perfusion of kidneys from male
or female F344 rats. Cell suspensions were incubated with the indicated concentrations of DCVC for up to 3 hr at
37°C on a metabolic shaking water bath. At the indicated times, aliquots were removed for measurement of lactate
dehydrogenase (LDH) release. Results are the means of incubations from 3 or 4 separate cell preparations.

233



LASH ET AL.

was not diminished by preincubation of cells
with AOAA, suggesting that other bioactiva-
tion mechanisms for DCVC may also be
present in the human kidney.

Anders and colleagues (146) recently
demonstrated the catalytic function of the
B-lyase in human volunteers anesthetized
with sevoflurane, which is metabolized to
compound A (2-[fluoromethoxy]-1,1,3,3-
pentafluoro-1-propene). Compound A is
nephrotoxic in rats (147-154) and undergoes
B-lyase-dependent metabolism with recovery
of GSH conjugates and mercapturates in bile
and urine, respectively (149,155). Iyer et al.
(146) identified two metabolites of com-
pound A, 2-(fluoromethoxy)-3,3,3-trifluoro-
propanoic acid and 3,3,3-trifluorolactic acid,
in the urine of human volunteers anesthetized
with sevoflurane that could only arise by
action of the B-lyase, thus demonstrating the
in vivo function of the B-lyase in humans.

The discussion in the article on
“Metabolism of Trichloroethylene” (1) of
DCVC as being a branch point in the metabo-
lism of TCE by the GSH pathway is relevant
to an understanding of TCE-induced renal
toxicity. DCVC can either undergo N-acetyla-
tion to produce the mercapturate, N-acetyl-
§(1,2-dichlorovinyl)-L-cysteine (NAcDCVC),
which is excreted in the urine, or it can be
bioactivated by the B-lyase or other enzymes to
form reactive species that produce toxicity.
Additionally, NAcDCVC can be deacetylated
within renal proximal tubular cells to regener-
ate DCVC. The toxicological significance of
this was demonstrated in studies that showed
that both NAcDCVC and DCVC are toxic in
vivo and to in vitro renal preparations
(156,157). A scheme summarizing these alter-
native fates of DCVC is shown in Figure 3.

The ability of other enzymes besides the
B-lyase, such as the L-0-hydroxy (L-0-amino)
acid oxidase (HAO) and the flavin-containing
monooxygenase (FMO) cysteine conjugate
S-oxidase (S-oxidase), to bioactivate DCVC is
discussed in detail in the article on
“Metabolism of Trichloroethylene” (7). The
B-lyase is the primary enzyme responsible for
bioactivation of DCVC. The toxicological

DCvVC —> DCVSH — Thioketene

relevance of this has been demonstrated both
in whole-animal iz vive studies (131) and in
various in vitro renal preparations (138,142,
158,159) by showing that alterations in f3-
lyase activity, such as inhibition with AOAA
or stimulation with 2-keto acids, correspond-
ingly alters DCVC toxicity.

In spite of the undisputed importance of
the B-lyase in cysteine conjugate-induced
nephrotoxicity, several studies have provided
evidence that additional enzymatic activities
can bioactivate DCVC and other haloalkenes
and haloalkanes and lead to toxicity. In two
studies on the immunohistochemical localiza-
tion of the B-lyase in the renal tubular epithe-
lium, some discrepancies were noted between
enzyme localization and the specific renal cell
population that was most susceptible to cys-
teine conjugate-induced injury. Although
MacFarlane et al. (160) showed a correspon-
dence between the nephron segments primar-
ily involved in the B elimination of DCVC
and TFEC and those most susceptible to
HCBD-induced cellular necrosis, Jones et al.
(161) found that distribution of the B-lyase
activity within the proximal tubules did not
correspond with the nephron segment that
was the most sensitive to DCVC and PCBC.

Although some role for the HAO in
DCVC bioactivation is supported by #n vitro
experimental data (162,163), this pathway
functions only in the rat, since the enzyme
activity is absent from the kidneys of most
mammalian species, including humans.
Stronger evidence exists for a role for the
S-oxidase. Several studies have demonstrated
that DCVC sulfoxide (159,164) and other
sulfoxides of cysteine conjugates or mercap-
turates (165-167) are more potent nephro-
toxicants than the corresponding cysteine
conjugates. The presence of the S-oxidase
activity in human kidney has not been stud-
ied yet, but identification of the activity as
possibly catalyzed by FMO1A1 (168) sug-
gests that it will likely be present in human
kidney as well. Nonetheless, the available data
indicate that most of the renal bioactivation
of DCVC and similar cysteine conjugates is

mediated by the B-lyase.
Cytotoxicity
Mutagenicity
Thionoacylchloride Cell proliferation
Carcinogenesis

Excreted

NAcDCVC == i/ Urine

Figure 3. Generalized scheme showing fates of DCVC in the kidneys. DCVC [S+(1,2-dichlorovinyl)--cysteine] may be
metabolized by the cysteine conjugate B-lyase to S{1,2-dichlorovinyl)thiol (DCVSH) or the mercapturate N-acetyl-S-
(1.2-dichlorovinyl)-L-cysteine (NACDCVC). Balance between fluxes of the B-lyase, N-acetylation, and deacetylation

will determine the toxic response in the kidneys.
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Acute mechanisms of proximal tubular
cytotoxicity. Limited experimental data with
TCE on its biochemical modes of action in the
kidneys are available. Hence, most of the avail-
able information on the biochemical effects of
TCE in renal proximal tubular cells must be
inferred from data on DCVG and DCVC.
These two conjugates have been used exten-
sively as models to study biochemical mecha-
nisms of renal cellular injury. The realization
that these chemicals are actually formed i vivo
from TCE and GSH in both animals and
humans and are not just model compounds
adds significance to the studies on DCVG and
DCVC for risk assessment of TCE.

Oxidative stress. An imbalance between
intracellular reductants and oxidants in favor
of oxidants is termed oxidative stress. This
has been implicated as a mechanism of toxic-
ity for a vast number of chemicals, in several
pathological states, and in aging (169).

Several studies have associated either TCE
(128) or DCVC (142,170-175) with caus-
ing oxidative stress after exposure of renal
cells to these chemicals. Primary biochemical
components of the oxidative stress response
include GSH oxidation or depletion, lipid
peroxidation, and oxidation or alkylation of
protein sulfhydryl groups. Each of these
processes, when altered, leads to secondary
effects that may then cause cytotoxicity.
Often, however, cytotoxicity can be dissoci-
ated from processes such as lipid peroxida-
tion. This can be demonstrated by showing
that an inhibitor of lipid peroxidation does
not protect cells from the cytotoxicity or cel-
lular necrosis induced by DCVC. Hence,
such responses can be considered epiphenom-
ena that are not causally related to cellular
injury. It is likely that oxidative stress plays
some role in DCVC-induced nephrotoxicity,
but lipid peroxidation is probably a conse-
quence rather than a cause of cellular injury.

Disturbances in calcium ion homeo-
stasis. Perturbations in intracellular Ca?* ion
homeostasis have been implicated in the toxi-
city of a large number and variety of xenobi-
otics. Cells such as those in the renal
proximal tubular epithelium maintain free
Ca?* concentrations in the cytosol in the
range of 0.1 pM, whereas extracellular Ca?*
concentrations are in the range of 1 mM.
Hence, there is a 10,000-fold concentration
gradient of Ca?* ions across the plasma mem-
brane. Consequences of raises in intracellular
Ca?* concentrations induced by DCVC
include inhibition of mitochondrial metabo-
lism and function (138,174,176), severe
mitochondrial damage (177), poly(ADP)-
ribosylation of nuclear proteins and DNA
double-strand breaks (124), and changes in
cytoskeletal protein structure and plasma
membrane blebbing (171,177). Renal epithe-

lial cells contain multiple pools of Ca?* ions,
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each differentially regulated. Data suggest
that these pools are not all equally sensitive to
DCVC. Rather, it appears that the mitochon-
drial Ca?* ion pool is the most sensitive to
disturbances (124,138,174,177).

The changes in cellular function that occur
as a consequence of the changes in Ca?* ion
distribution may be attributed, at least in part,
to the activation of Ca?*-dependent degrada-
tive enzymes, such as proteases, endonucleases,
and phospholipases. The critical importance of
Ca?* ion homeostasis, and the data that clearly
show early effects of DCVC metabolites, sug-
gest an important role for disturbances in Ca?*
ion homeostasis in the biochemical mechanism
of action of DCVC.

Mitochondrial dysfunction. The mito-
chondria were implicated a number of years
ago as a primary target site within the cell for
nephrotoxic cysteine S-conjugates such as
DCVC. Parker and colleagues (178-180)
utilized rat liver mitochondria for their pio-
neering investigations on the mitochondrial
toxicity of DCVC with the thinking that
even though the liver is not affected by
administration of DCVC, isolated liver mito-
chondria can be obtained more easily and in
greater quantities and are typically more func-
tionally intact than isolated kidney mitochon-
dria. Although these points are true, it should
not be taken « priori that responses seen in
liver and kidney mitochondria will be the
same. Furthermore, by use of liver mitochon-
dria as a model system, the impression is cre-
ated that this is a normal in vivo target site,
which is incorrect. As discussed in the section
on interorgan metabolism in the article on
“Metabolism of Trichloroethylene” (1), the
liver cannot take up GSH conjugates and has
efficient means for secretion of GSH, cys-
teine, and N-acetylcysteine conjugates into
bile or plasma. Hence, liver mitochondria will
not be exposed to DCVC nor will they
exhibit diminished function as a consequence
of exposure to DCVC, even though the liver
does have B-lyase activity.

More recently, several studies on the
mechanism of action of DCVC and related
cysteine conjugates have focused on the mito-
chondria and have shown that mitochondrial
dysfunction is an early event in the course of
exposure to these compounds that may be
causally associated in many cases with cellular
injury (138,173,174,181). Only one study
looked at the effects of TCE on renal cortical
mitochondria (81), where TCE was shown to
modestly inhibit state 3 respiration and to
increase state 4 respiration, indicative of
membrane damage and uncoupling. Unlike
TCE, DCVC does not uncouple mitochon-
dria but inhibits state 3 respiration by specifi-
cally inhibiting several sulfhydryl-containing
enzymes (81,174,182,183). Experiments on
the coupling site specificity of the inhibition
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of mitochondrial respiration showed that site
11, the succinate dehydrogenase complex, is
the most susceptible to DCVC (138,173,
174) and that this is related to inhibition of
the enzyme (174,175).

Formation of covalent adducts with
proteins and other macromolecules in mito-
chondria have been documented (182,184,
185). Some of the covalent binding to mito-
chondrial proteins occurs through formation
of mixed disulfides (182), although other
nucleophilic sites are also targeted. Covalent
binding of DCVC is largely dependent on its
metabolism by the B-lyase, as AOAA blocks
much of the binding. The fraction of mixed
disulfides as opposed to adducts through other
nucleophilic groups, such as the €-amino
group of lysyl residues, differs with different
cysteine conjugates, indicating that the chemi-
cal nature of the reactive metabolite from vari-
ous cysteine conjugates also differs. The
correlation between covalent binding and
mitochondrial dysfunction also does not
clearly correspond with the extent of metabo-
lism (182). Hence, it is likely that formation
of covalent adducts with mitochondrial
proteins is only one mode of action.

The mitochondrial genome is another
potential target of nephrotoxic cysteine con-
jugates (186), where cysteine conjugates
inhibit macromolecular synthesis and pro-
duce DNA damage.

Protein alkylation. In addition to mito-
chondrial proteins that are alkylated by reac-
tive metabolites of DCVC and other cysteine
conjugates, cytosolic proteins have been iden-
tified as specific targets. Eyre et al. (187)
found that both TCE and DCVC, adminis-
tered in vivo, produced acid-labile adducts
with protein. Pretreatment with either
diethylmaleate, which depletes cellular GSH
content, ot the B-lyase inhibitor AOAA
inhibited adduct formation with TCE, indi-
cating that most of the renal adduct forma-
tion from TCE was due to metabolism by the
GSH conjugation pathway and not by P450.
In a companion study (788), they also
showed that whereas the extent of metabo-
lism and covalent binding in mice was greater
than in rats, it is the rats that are more sensi-
tive to TCE-induced nephrotoxicity.
However, rates of cell replication were corre-
spondingly higher in mice. Hence, they con-
cluded that other factors besides covalent
adduct formation must contribute to the
induction of renal carcinogenesis by TCE.

It is often difficult to associate the finding
of covalent adducts with proteins and func-
tional changes in the cell. However, Lock and
Schnellmann (/89) identified cytosolic glu-
tathione reductase and mitochondrial lipoyl
dehydrogenase from rat renal cortex as specific
targets of reactive species generated from
B-lyase-dependent metabolism of DCVC.
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Chen et al. (190) and Bruschi et al. (191)
showed that one consequence of alkylation of
cellular macromolecules by metabolites of cys-
teine conjugates is the transcriptional activa-
tion of stress proteins, such as the 70-kDa and
60-kDa heat shock proteins (hsp70 and
hsp60). Hence, covalent adduct formation can
lead to regulatory changes in the renal cell. In
another study from Stevens and colleagues
(144), DCVG and DCVC were shown to
form covalent adducts with proteins from
human proximal tubular cells. Thus, the same
biochemical mechanisms observed in rodent
kidney cells also occur in the human kidney.

Renal repair processes. A potential
response to perturbations caused by exposure
to cytotoxic agents is the induction of repair
processes. One repair response to agents that
form adducts with or damage DNA is the
induction of UDS (122,123). Wallin et al.
(192) observed changes in expression of cer-
tain cellular proteins after DCVC-induced
cellular injury and the induction of nephro-
genic repair. Cytokeratins are characteristic
marker proteins that are expressed in normal,
differentiated renal proximal tubular cells and
other differentiated epithelial cells. After cel-
lular regeneration begins, expression of cyto-
keratins decreases and expression of vimentin,
which is normally characteristic of endothelial
cells, increases. Corresponding with this
change in expression is an increase in DNA
synthesis as cellular proliferation occurs. In a
study by Ward et al. (193) of vimentin
expression in the kidneys of both control and
nephrotoxicant-treated male rats of various
ages and in human renal-cell carcinomas,
increased vimentin expression was noted in
regenerating renal tubular lesions of toxicant-
treated rats and in most human renal-cell car-
cinomas and latent preneoplastic or
neoplastic renal tubular lesions that were
found incidentally at autopsy. Hence, the
repair—proliferation response also occurs in
human kidney and is associated with both
regeneration after toxicant damage and in
development of neoplasias.

Schnellmann and colleagues (194-196)
have developed and validated an in vitro
model of renal proximal tubule regeneration
using primary cultures of proximal tubular
cells from rabbit kidney. From these and the
studies described above, it is clear that DCVC
can induce damage that leads to a repair
response. This repair response is characteristic
of renal tissue in both rodents and humans
and is therefore relevant to a consideration of
human exposure to TCE.

Alterations in gene expression and cell
proliferation. Another aspect of the repair
and proliferative responses to nephrotoxicants
or neoplasia is changes in gene expression that
can occur and that may underlie these
responses. In addition to demonstrations that
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DCVC induces renal-cell repair and
proliferation (188,192), activation of specific
genes that have been associated with regula-
tion of cellular growth and differentiation,
such as hsp60 and hsp70 (190,191), c-fos and
c-myc (197,198), and gadd 153 (growth
arrest and DNA damage) (199), have been
found. Hence, these data show that reactive
metabolites generated from DCVC metabo-
lism can alter the expression of critical genes
that are involved in the control of cell growth
and differentiation. A detailed dose- and
time-dependence study of these responses in
relation to other effects of DCVC has not,
however, been performed. It is thus difficult
to assess the relevance of these effects with
respect to exposure to TCE.

Contribution of Different Modes of
Action to TCE-Induced Kidney
Tumorigenesis

It is likely that multiple modes of action may
be important in TCE-induced kidney cancer
and that different modes or combinations of
modes of action may be important at high or
low doses of TCE. For example, several mech-
anisms of acute proximal tubular necrosis may
occur, and both genotoxic and nongenotoxic
mechanisms may be involved in the develop-
ment of kidney tumors. A schematic summary
of renal effects of TCE that are mediated
through the GSH conjugation pathway are
shown in Figure 4. One must consider that
the various cytotoxic, repair, and proliferative
responses represent a continuum, and that the
relative importance of different responses will
depend on the dose of the reactive species and
on several factors relating to renal cellular
function. For example, DNA repair processes,
oncogene activation, and cellular transforma-
tion require intact cellular structure and an
adequate supply of ATP for protein synthesis.
Hence, if cells are exposed to very high doses
of DCVC that produce extreme mitochondr-
ial dysfunction, it is likely then that the tissue
will not be competent to undergo repair and
proliferation.

From the available data, one can conclude
that exposure of renal cells to high doses of
DCVC will produce oxidative stress, protein
and DNA alkylation, and mitochondrial dys-
function. As a consequence of inhibition of
active transport processes and marked ATP
depletion, cytotoxicity will occur and result in
acute tubular necrosis. At lower doses, in con-
trast, it is likely that mild changes in mito-
chondrial function and oxidative stress as well
as selective alkylation of protein and DNA
will occur, and that these effects will lead to
changes in homeostatic processes in the cell
that will ultimately alter gene expression and
cell growth. A task for investigators will be to
delineate the conditions under which the
various responses can occur.

236

Questions and Research Needs

Renal Concentration of Toxic
Metabolites

Better methods are needed to quantitate reac-
tive species that are generated during TCE
metabolism, particularly in the B-lyase path-
way. This will also improve utility of in vitro
studies by allowing more accurate compar-
isons of in vive and in vitro studies and will
help in the validation of PBPK models.
Urinary excretion of mercapturic acids has
been used as a marker for the function of the
B-lyase pathway, indeed as a marker of expo-
sure (200). However, many investigators have
misused this information to make conclusions
regarding the flux through the B-lyase
pathway relative to that through the P-450
pathway, stating that the relative flux through

GSH l GST

DCVG
* GGT

*DP

the B-lyase pathway is more than three orders
of magnitude lower than that through the
oxidative pathway. This conclusion is based
on comparisons of urinary NAcDCVC,
TCA, and trichloroethanol (TCOH).

It must be remembered that NAcDCVC
represents only a fraction of the TCE that is
metabolized through the GSH conjugation
pathway. After being metabolized to DCVC,
two fates are possible: N-acetylation or
metabolism by the B-lyase or another enzyme
that generates a reactive metabolite. Eyre
et al. (187) and van Welie et al. (200) have
suggested that protein and DNA adducts
should be used as markers of flux of reactive
metabolites from TCE through DCVC.
Problems with this approach are that many
of these adducts are chemically unstable, so
that recovery during analytical procedures
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Figure 4. Summary scheme of the postulated modes of action of TCE via the GSH conjugation pathway for nephro-
toxicity and nephrocarcinogenicity. The scheme summarized demonstrated and hypothesized modes of action of TCE
in mammalian kidney, showing the various intracellular targets and the interplay between them in ultimately causing
nephrotoxicity or nephrocarcinogenicity. Abbreviations used: DP, dipeptidase; RS, reactive thiol and subsequent
species generated from B-lyase-catalyzed metabolism of DCVC.
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may be incomplete and variable. The
primary purpose for obtaining better data on
the flux through the B-lyase pathway is to
assess if enough of the reactive metabolite
generated from DCVC is produced at typical
exposure doses of TCE. Recently, Bruckner
and colleagues (83) have made progress in
this area by estimating tissue concentrations
of TCE with a PBPK model. Additional
efforts in this area will help clarify the quan-
titative significance of the B-lyase pathway
and the renal modes of action in TCE-
induced carcinogenesis.

Male and Female Renal Cancer
Differences in Rats versus Similarities
in Biochemistry

The most recent biochemical data on TCE
and similar aliphatic hydrocarbons such as
PER that are being obtained by various investi-
gators need to be correlated with cancer data to
determine if correlations between biochemistry
and toxic responses can be made. Although
this has been done to some extent, additional
studies are needed. As discussed above, the dif-
ferent modes of action in the kidney, which
range from cytotoxicity to DNA damage to
alterations in gene expression and stimulation
of proliferation, should be viewed as a contin-
uum. Dose dependencies for these various
responses need to be determined and corre-
lated with tumor incidence and susceptibility
in male and female rodents and humans.

Human GSH S-Transferase Activity
for Conjugation with TCE

These data will allow more complete assess-
ment of the quantitative importance of this
pathway in humans and will allow better
comparisons between data from laboratory
animals and those from humans. Data are
currently available for this pathway in cul-
tured human hepatocytes and human liver
and kidney cytosol and microsomes [see arti-
cle on “Metabolism of Trichloroethylene” (1)
and Lash et al. (201)]. Complete assessment
of these results will allow a true, quantitative
comparison of metabolic rates in kidney and
liver from humans and rodents.
Pharmacokinetic and biochemical study
of blood and urine from human volunteers
exposed to TCE by inhalation showed that
DCVG can be detected in the blood, demon-
strating function of at least the first step of
the GSH conjugation pathway in humans
(202). Function of the B-lyase in humans for
TCE has not been directly demonstrated.
However, Vélkel et al. (203) demonstrated
recovery of DCA from PER in blood of rats,
but not humans, exposed to PER by inhala-
tion. In this case, DCA can arise only by
B-lyase-dependent metabolism. The authors
concluded that this provided evidence of
significantly higher flux of PER through the
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B-lyase pathway in rats than in humans.
Kharasch et al. (204) demonstrated function
of the B-lyase pathways in rats exposed to com-
pound A by quantifying recovery of 3,3,3-tri-
fluoro-2-(fluoromethoxy)propanoic acid in
urine. A similar, although not as extensive,
analysis in humans exposed to compound A
(205) indicated flux through the bioactivation
pathway was 6-fold greater in rats than in
humans. Again, these data suggest that use of
rodent data for human health risk assessment
likely overestimates the risk to humans.

GST Isozyme Specificity for GSH
Conjugation of TCE

The significance of species-, sex-, and tissue-
dependent differences in expression of GST
isozymes and genetic polymorphisms in
determining overall metabolism and toxicity
for many chemicals is becoming increasingly
apparent. Hence, there is a need, in both
rodents (rats, mice) and humans, to quantify
the activity of different GST isozymes toward
TCE. A recent study by Cummings et al.
(206) shows that rat kidney proximal tubular
cells express GSTo but not GSTy or GSTT,
and kinetic and inhibitor studies show that
GSTal-1 is the primary isoenzyme in rat
kidney that catalyzes GSH conjugation of
TCE. Similar studies have not yet been con-
ducted in human kidney cells. However,
Cummings et al. (207) found that unlike rat
proximal tubular cells, freshly isolated and
primary cultures of human proximal tubular
cells express GSTA, GSTP, and GSTT, sug-
gesting that the ability of human kidney to
catalyze GSH conjugation of TCE may differ
significantly from that of rat kidney.

Relative #n Vivo Rates of -lyase
versus V- transferase/Deacetylase
in DCVC Metabolism

These data are important for allowing us to
better track the fate of DCVC in renal tissue
and, hence, to determine the overall flux of
TCE through this pathway. The primary
method for quantifying flux through the
B-lyase pathway has been measurement of
mercapturates. However, as discussed above,
several competing reactions occur whose
rates we currently do not or cannot accu-
rately determine. The presence of deacetyla-
tion reactions further complicates the
situation and makes the interpretation of
mercapturate formation less clear. The key
rates to be determined, therefore, are those
for the B-lyase, the N-acetyltransferase, and
the deacetylation reaction. Green et al. (208)
have reported that in human kidney, metab-
olism by the M-acetyltransferase is two orders
of magnitude greater than that by B-lyase.
However, the rates of DCVG formation
reported by Green et al. (208) in rodents and
in human tissue are more than two orders of
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magnitude lower than those reported by Lash
et al. (81,82). Hence, continued research in
this area is clearly warranted.

Studies with the chemically related com-
pound PER (203), as discussed above, suggest
that the biotransformation rate of PER by the
B-lyase pathway is significantly higher in rats
than in humans. The authors concluded that
use of rat tumorigenicity data for human
health risk assessment of PER may overesti-
mate human tumor risks. A second study
(209) examined the formation of protein
adducts in kidney, liver, and blood of rats, and
in human blood after PER inhalation and
found much lower levels of adducts in human
blood than in rat blood, again suggesting that
toxicity is greater in rats than in humans.

Role of Renal Cytochrome P450
in TCE-Induced Renal Toxicity
and Carcinogenesis

Studies are needed to quantitate rates of renal
P450 metabolism of TCE in rats, mice, and
humans. Although most of the available data
with TCE in the kidney indicate that the
renal effects of TCE arise from generation of
DCVC and subsequent reactive species, the
oxidative pathway has not been thoroughly
investigated in the kidneys.

Further Research into the Modes

of TCE- and DCVC-Induced

Renal Toxicity

Although much data have been accumulated
on various modes of action in the kidneys, a
precise sequence of events cannot clearly be
constructed. A fine line may exist between
cytotoxic events and those that lead to renal
cellular repair and/or proliferation. The latter
may allow transformation and carcinogenesis
to occur. Defining conditions that produce
cytotoxicity, sublethal alterations and repair,
proliferation, and transformation is critical to
understanding mode of action. Furthermore,
this is necessary to provide an appropriate
and correct human health risk assessment.
Studies defining dose and time dependencies
for the different responses are warranted.

The recent work on the VHL gene and its
role in renal cancer suggests that mutations in
the VHL gene may be an important mode of
action for many examples of chemically
induced renal cell cancer. A more detailed
analysis and comparison of VHL mutational
spectra, therefore, in TCE exposed and
non—TCE-exposed cases of renal cell carci-
noma is warranted to allow a full and accu-
rate appraisal of the biological significance of
this mode of action.
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